Transient Natural Convection in an Enclosure with Variable Thermal Expansion Coefficient and Nanofluid Properties

author

  • Esmaeil Ghahremani Department of Energy Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Islamic Republic of Iran
Abstract:

Transient natural convection is numerically investigated in an enclosure using variable thermal conductivity, viscosity, and the thermal expansion coefficient of Al2O3-water nanofluid. The study has been conducted for a wide range of Rayleigh numbers (103≤ Ra ≤ 106), concentrations of nanoparticles (0% ≤ ϕ ≤ 7%), the enclosure aspect ratio (AR =1), and temperature differences between the cold and hot walls (∆T= 30). Transient parameters such as development time and time-average Nusselt number along the cold wall are also presented as a non-dimensional form. Increasing the Rayleigh number shortens the non-dimensional time of the initializing stage. By increasing the volume fraction of nanoparticles, the flow development time shows different behaviors for various Rayleigh numbers. The non-dimensional development time decreases by enhancing the concentration of nanoparticles.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Effect of Variable Thermal Expansion Coefficient and Nanofluid Properties on Steady Natural Convection in an Enclosure

Steady state natural convection is numerically investigated in an enclosure using variable thermal conductivity, viscosity and thermal expansion coefficient of Al2O3–water nanofluid. This study has been conducted for a wide range of Rayleigh numbers (103≤ Ra ≤ 106), concentrations of nanoparticles (0% ≤ Φ ≤ 7%), enclosure aspect ratios (0.5 ≤ AR ≤ 2) and temperature differences between the cold...

full text

MHD Natural Convection and Entropy Generation of Variable Properties Nanofluid in a Triangular Enclosure

Natural convection heat transfer has many applications in different fields of industry; such as cooling industries, electronic transformer devices and ventilation equipment; due to simple process, economic advantage, low noise and renewed retrieval. Recently, heat transfer of nanofluids have been considered because of higher thermal conductivity coefficient compared with those of ordinary fluid...

full text

mhd natural convection and entropy generation of variable properties nanofluid in a triangular enclosure

natural convection heat transfer has many applications in different fields of industry; such as cooling industries, electronic transformer devices and ventilation equipment; due to simple process, economic advantage, low noise and renewed retrieval. recently, heat transfer of nanofluids have been considered because of higher thermal conductivity coefficient compared with those of ordinary fluid...

full text

The Effect of Variable Properties on Rayleigh-Benard Convection in an Enclosure Filled with Al2O3-EG-Water Nanofluid

In this paper, the natural convection heat transfer of Al2O3-EG-water nanofluid in a rectangular cavity which is heated from the bottom and is cooled from the top has been investigated numerically. The governing equations for a Newtonian fluid have been solved numerically with a finite volume approach using the SIMPLER algorithm. The main focus of the current study is on the effects of variable...

full text

Mixed Convection of Variable Properties Al2O3-EG-Water Nanofluid in a Two-Dimensional Lid-Driven Enclosure

In this paper, mixed convection of Al2O3-EG-Water nanofluid in a square lid-driven enclosure is investigated numerically. The focus of this study is on the effects of variable thermophysical properties of the nanofluid on the heat transfer characteristics. The top moving and the bottom stationary horizontal walls are insulated, while the vertical walls are kept at different constant temperature...

full text

Numerical Study of Mixed Convection in a Lid-Driven Enclosure with a Centered Body Using Nanofluid Variable Properties

In the present study, mixed convection laminar flow around an adiabatic body in a Lid-driven enclosure filled with nanofluid using variable thermal conductivity and variable viscosity is numerically investigated. The fluid around the body in the enclosure is a water- based nanofluid containing Al2O3 nanoparticles. The Vertical enclosure’s walls are maintained at constant cold temperature an...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 3

pages  133- 139

publication date 2018-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023